KINETICS OF BENZOYL CHLORIDE HYDROLYSIS

INTRODUCTION

Acid chlorides ($\mathrm{R}-\mathrm{COCl}$) are derivatives of carboxylic acids $(\mathrm{R}-\mathrm{COOH})$, in which the -OH group in the $(-\mathrm{COOH})$ functional group was substituted with a chlorine atom -Cl . They are the most reactive derivatives of carboxylic acids. As a result of acid chloride hydrolysis, a corresponding carboxylic acid, and hydrogen chloride are formed.

In the case of benzoyl chloride (PhCOCl) the reaction proceeds according to the following equation:

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \rightarrow \text { products } \tag{2}
\end{equation*}
$$

Assuming the ideal mixing of the reagents and the constant volume of the reaction mixture, changes in the concentrations of the substrates in time may be described using a $2^{\text {nd }}$ order kinetic equation:
$-\frac{d c}{d t}=k \cdot c_{A} \cdot c_{B}$

It results from the reaction stoichiometry (equation 2) that the concentration of substrate A decreases to the value $c_{A}=a-x$, then the concentration of substrate B decreases to the value $c_{B}=b-x$, equation (3) may be written as:
$-\frac{d c_{A}}{d t}=-\frac{d c_{B}}{d t}=k \cdot(a-x) \cdot(b-x)$
where:
c_{A} - concentration of substrate A,
c_{B} - concentration of substrate B,
a - initial concentration of substrate A (e.g. water),
b - initial concentration of substrate B (e.g. PhCOCl$)$,
x - temporary concentration of the product,
t - time,
k - reaction rate constant,

Since the loss of substrate concentration equals the increase in the concentration of the product:
$-\frac{d c_{A}}{d t}=\frac{d x}{d t}$
the kinetic equation takes the form:

$$
\begin{equation*}
\frac{d x}{d t}=k \cdot(a-x) \cdot(b-x) \tag{6}
\end{equation*}
$$

After the separation of the variables and integration within the limits of integration resulting from the boundary condition $x=0$ for $\mathrm{t}=0$, equation (6) takes the form:
$\frac{1}{(a-b)} \ln \frac{b(a-x)}{a(b-x)}=k \cdot t$

The equation below should be constant and equal to the searched constant process rate:
$\frac{1}{t} \cdot \frac{1}{(a-b)} \ln \frac{b(a-x)}{a(b-x)}=$ const $=k$.

PURPOSE OF EXERCISE

The objective of this task is to determine the reaction rate constant for benzoyl chloride hydrolysis at various initial concentrations of the reagents.

APPARATUS

- thermostat (np. U-1.),
- magnetic stirrer and a magnetic stirring bar (dipole),
- conductometer (CC-501),

LAB GLASS

- a thermostatic reaction vessel,
- beakers $50 \mathrm{~cm}^{3}, 100 \mathrm{~cm}^{3}$,
- glass pipettes $\left(1,5 \mathrm{i} 10 \mathrm{~cm}^{3}\right)$,
- measuring flasks $10 \mathrm{ml}-3$ pieces.

CHEMICALS

- Distilled water,
- Acetone - AC (Cz.D.A),
- 5 M solution of benzoyl chloride (PhCOCl) in acetone (AC).

EXPERIMENT PROCEDURES

- All measurements should be performed at a constant temperature of $35^{\circ} \mathrm{C}$,
- Prepare diluted solutions of water in acetone in 10 ml volumetric flasks,

Laboratory Exercises

- Run 3 reactions of benzoyl chloride hydrolysis in prepared solutions, changing the amounts of the reagents according to the table given below:

Table 1.

No.	Solution $\mathbf{H}_{2} \mathbf{O}: \mathbf{A C}$		Amount of PhCOCl
	Water $\left[\mathbf{c m}^{\mathbf{3}}\right]$	$\mathbf{A C}\left[\mathbf{c m}^{\mathbf{3}}\right]$	$\left[\mathbf{c m}^{\mathbf{3}}\right]$
1	5	to 10	0.40
2	4	to 10	0.40
3	3	to 10	0.80

- Turn on the CC-501 conductometer,
- After pouring respective amounts of the substrates (water and acetone) into the volumetric vessel turn on the mixing function and next immerse the conductometer probe,
- Heat the mixture to a temperature of $35^{\circ} \mathrm{C}$,
- On the computer screen start the S4i5-pc. application (Fig. 1),

- From the menu "File" select the option "Download data",
- Set the value of the interval at 1 s and the number of samples at 3000 ,

- After the temperature stabilizes push the "Download" button,
- After pushing the "Download" button the values of electrolytic conductivity (σ) measured by the conductometer will be recorded (measurement sampling). Simultaneously the measured values σ will be displayed in the "Download data" window and entered successively in the form of text data in the NoName.txt. file,
- After approx. 30 seconds from the beginning of sampling, supplement the water-acetone solution with a respective amount (according to Table 1) of 5 M PhCOCl solution in acetone. After adding PhCOCl the value of conductivity of the solution will start to increase,
- Wait until the completion of the reaction, i.e. stabilization of conductivity. Turn off the recording of measurements by pushing the "Stop" button,
- In the menu "File" record data in the folder "Measurements",
- Prepare the system for the next reaction, i.e. wash the vessel, electrodes, and thermometer with acetone,
- After completion of the measurements submit the files with recorded measurement data by e-mail.

CAUTION!

- after removing the mixing element (dipole) pour the spent solution into the vessel labeled "Liquid waste",

PREPARATION OF RESULTS

- Import the results to a spreadsheet,
- Remember when separating the data to take into consideration the order to magnitude initially recorded using symbols $\mu \mathrm{S} / \mathrm{cm}, \mathrm{mS} / \mathrm{cm}$, etc. All numerical data have to be expressed in the same units (e.g. $\mu \mathrm{S} / \mathrm{cm}$ or $\mathrm{mS} / \mathrm{cm}$),
- Assume the moment, in which the water-acetone mixture was supplemented with the PhCOCl solution, as the reaction onset time,
- Plot the dependence of conductivity (σ) on time (t),

Laboratory Exercises

Fig3. Example of the measurement plot

- Calculate the initial concentration of water $(a), \mathrm{PhCOCl}(b)$, and the instantaneous concentration of product (x), i.e. HCl , from formula (9):
$x=\frac{\sigma_{t}-\sigma_{o}}{\sigma_{\max }} \cdot b$
where:
σ_{t} - the value of conductivity at a given time point (in time t),
σ_{o} - initial value of conductivity (water-acetone solution before adding PhCOCl at a constant temperature),
$\sigma_{\max }$ - the final value of conductivity (after the completion of the reaction),
b - initial concentration of benzoyl chloride solution,
- Calculate reaction rate constants k using equation (8),
- Calculate mean values of reaction rate constant (\bar{k}) for individual concentrations and standard deviation \bar{k}.

No.	The initial concentration of water a	The initial concentration of PhCOCl $\left[\mathrm{mol} \cdot \mathrm{dm}^{-3}\right]$	Mean values of reaction rate constant $\left[\mathrm{mol} \cdot \mathrm{dm}^{-3}\right]$	Standard deviation of the mean $\left[\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right]$
1				\bar{k} $\left[\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right]$
2				
3				

Poznan University of Technology

Faculty of Chemical Technology
Physical Chemistry Division
Laboratory Exercises

Template of the table and draft of the study

	Imię i Nazwisko studenta	Data wykonywania ćwiczenia:
Nr grupy: \qquad Nr zespołu: \qquad	Nr ćwiczenia:	Nazwisko Prowadzącego:

1. Temat ćwiczenia
2. Cel ćwiczenia:
3. Wstęp teoretyczny:
4. Pomiary:
5. Obliczenia:
6. Wykresy:
7. Wnioski
8. Exercise title:
9. The aim of the exercise:
10. Theoretical introduction:
11. Results:
12. Calculations:
13. Graphs:
14. Conclusions:
